Modelo Ágil - Exemplos

Prof. Dr. William Simão de Deus

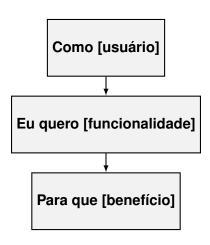
william.deus@ifpr.edu.br Instituto Federal do Paraná (IFPR) Campus Pinhais Gestão da Tecnologia da Informação – 2025.01

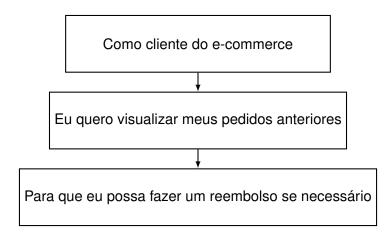
Processos ágeis

Cascata Diferenças Ágil

- Fases bem definidas
- Planejamento detalhado
- · Menor flexibilidade

- Iterativo e incremental
- Planejamento adaptativo
- Alta flexibilidade
- Exemplos: Scrum, XP


 Na XP (Extreme Programming), os requisitos são expressos em cenários chamados de "histórias do usuário"


- Na XP (Extreme Programming), os requisitos são expressos em cenários chamados de "histórias do usuário"
- As histórias do usuário são implementadas diretamente como uma série de tarefas

- Na XP (Extreme Programming), os requisitos são expressos em cenários chamados de "histórias do usuário"
- As histórias do usuário são implementadas diretamente como uma série de tarefas
- Os programadores trabalham em pares

- Na XP (Extreme Programming), os requisitos são expressos em cenários chamados de "histórias do usuário"
- As histórias do usuário são implementadas diretamente como uma série de tarefas
- Os programadores trabalham em pares
- Testes são desenvolvidos para cada tarefa antes de escrever o código

- Na XP (Extreme Programming), os requisitos são expressos em cenários chamados de "histórias do usuário"
- As histórias do usuário são implementadas diretamente como uma série de tarefas
- Os programadores trabalham em pares
- Testes são desenvolvidos para cada tarefa antes de escrever o código
- Todos os testes devem ser executados com sucesso quando o novo código é integrado ao sistema

Programação em par

- Colaboração constante: Dois programadores trabalham juntos em um único computador, compartilhando a responsabilidade pelo código
- Divisão de papéis: Um programador escreve o código (motorista) enquanto o outro revisa continuamente (navegador)
- Revezamento de papéis: Os programadores trocam de papéis regularmente, garantindo que ambos estejam envolvidos ativamente no processo

Programação em par

- Qualidade do código: O feedback contínuo do parceiro ajuda a identificar erros rapidamente, aumentando a qualidade do código produzido
- Design e soluções melhores: A colaboração direta leva a decisões de design mais cuidadosas e soluções criativas para os problemas
- Compartilhamento de conhecimento: A prática promove a troca de conhecimentos e habilidades entre os programadores, melhorando o nível técnico da equipe

Extreme Programming

(SOMMERVILLE, 2011)

 Não estou convencido de que a Programação Extrema seja um método ágil prático para a maioria das empresas, mas sua contribuição mais importante é, provavelmente, o conjunto de práticas de desenvolvimento ágil que introduziu na comunidade.

- História de usuários: decompor as histórias e definir o esforço.
 Capacidade de priorizar tarefas
- Refatoração: apesar de ser uma prática importante, muitas vezes isso não é realizado em projetos de software
 - Códigos redundantes
 - Funções semelhantes
 - Dependências
 - Códigos sem utilização

- Desenvolvimento com testes a priori: desenvolver casos de testes ao invés do apenas codificar o software
- Programação em Pares: revisão informal já que cada linha de código é examinada por ao menos 2 pessoas

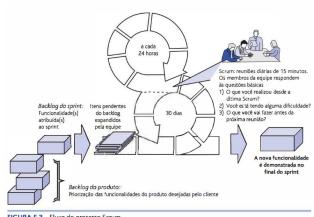


FIGURA 5.3 Fluxo do processo Scrum.

Figura: Fonte: (PRESSMAN, 2005)

O que é Scrum?

 Scrum é um framework ágil para gerenciamento e desenvolvimento de produtos

O que é Scrum?

- Scrum é um framework ágil para gerenciamento e desenvolvimento de produtos
- Baseado na teoria empírica de controle de processo, que enfatiza a transparência, comunicação e adaptação

O que é Scrum?

- Scrum é um framework ágil para gerenciamento e desenvolvimento de produtos
- Baseado na teoria empírica de controle de processo, que enfatiza a transparência, comunicação e adaptação
- Utiliza iterações curtas e entregas frequentes (chamadas de sprints) para promover o progresso contínuo.

Papéis no Scrum

 Product Owner: Responsável por maximizar o valor do produto e gerenciar o backlog do produto

- Product Owner: Responsável por maximizar o valor do produto e gerenciar o backlog do produto
- Scrum Master: Garante que o Scrum seja entendido e seguido pela equipe, removendo impedimentos e facilitando o processo

- Product Owner: Responsável por maximizar o valor do produto e gerenciar o backlog do produto
- Scrum Master: Garante que o Scrum seja entendido e seguido pela equipe, removendo impedimentos e facilitando o processo
- Equipe de Desenvolvimento: Equipe multifuncional que cria o incremento de produto no final de cada sprint.

Artefatos do Scrum

 Product Backlog: Lista priorizada de tudo que é necessário no produto. Mantido pelo Product Owner

Artefatos do Scrum

- Product Backlog: Lista priorizada de tudo que é necessário no produto. Mantido pelo Product Owner
- Sprint Backlog: Itens selecionados do Product Backlog para a sprint atual, junto com um plano para entregar o incremento

- Product Backlog: Lista priorizada de tudo que é necessário no produto. Mantido pelo Product Owner
- Sprint Backlog: Itens selecionados do Product Backlog para a sprint atual, junto com um plano para entregar o incremento
- Incremento: O produto entregue ao final de cada sprint, que deve ser funcional e potencialmente utilizável

Eventos do Scrum

 Sprint: Período de tempo fixo (geralmente 2 a 4 semanas) durante o qual o trabalho é realizado

- Sprint: Período de tempo fixo (geralmente 2 a 4 semanas) durante o qual o trabalho é realizado
- Sprint Planning: Reunião no início da sprint para definir o que será entregue e como o trabalho será feito

- Sprint: Período de tempo fixo (geralmente 2 a 4 semanas) durante o qual o trabalho é realizado
- Sprint Planning: Reunião no início da sprint para definir o que será entregue e como o trabalho será feito
- Daily Scrum: Reunião diária de 15 minutos para sincronizar as atividades da equipe e planejar o próximo dia

 Sprint Review: Reunião no final da sprint para inspecionar o incremento e adaptar o backlog do produto

- Sprint Review: Reunião no final da sprint para inspecionar o incremento e adaptar o backlog do produto
- Sprint Retrospective: Reunião no final da sprint para identificar melhorias no processo e no trabalho em equipe

- Adaptabilidade: Capacidade de reagir a mudanças rapidamente
- Entrega frequente: Incrementos regulares garantem que o produto esteja sempre evoluindo
- Colaboração: Times autônomos e multifuncionais promovem a colaboração eficaz
- Foco no valor: Prioridade dada a itens que trazem maior valor ao cliente

Crystal Clear

- Criado por Alistair Cockburn em 1997 (WAZLAWICK, 2019)
- Voltado para equipes pequenas
- Segundo (WAZLAWICK, 2019), uma equipe geralmente é composta por:
 - Um designer líder
 - Dois a sete programadores

(WAZLAWICK, 2019):

 Uso de radiadores de informação, como quadros e murais à vista de todos

- Uso de radiadores de informação, como quadros e murais à vista de todos
- Acesso fácil a especialistas de domínio

- Uso de radiadores de informação, como quadros e murais à vista de todos
- Acesso fácil a especialistas de domínio
- Eliminação de distrações no ambiente de trabalho

- Uso de radiadores de informação, como quadros e murais à vista de todos
- Acesso fácil a especialistas de domínio
- Eliminação de distrações no ambiente de trabalho
- Cronograma de desenvolvimento baseado na técnica de timeboxing

- Uso de radiadores de informação, como quadros e murais à vista de todos
- Acesso fácil a especialistas de domínio
- Eliminação de distrações no ambiente de trabalho
- Cronograma de desenvolvimento baseado na técnica de timeboxing
- Ajuste do método conforme necessário durante o processo

Ciclo de Vida do Crystal Clear

- O ciclo de vida é organizado em três níveis (WAZLAWICK, 2019):
 - Iteração: Estimação, desenvolvimento e celebração; dura poucas semanas
 - Entrega: Formada por várias iterações, entrega funcionalidades úteis ao cliente no máximo em dois meses
 - Projeto: Conjunto de todas as entregas

Diagrama do Ciclo de Vida

Iteração	Iteração	Iteração	Iteração	Iteração	Iteração		Iteração	Iteração	Iteração	Iteração	Iteração	Iteração
Entrega		Entrega		Entrega			Entrega		Entrega		Entrega	
Projeto												

Figura 4.8 Estrutura do ciclo de vida do Crystal Clear.

Figura: Fonte: (WAZLAWICK, 2019)

Pilares

De acordo com (WAZLAWICK, 2019), os três principais pilares do Crystal Clear são:

- No máximo em dois meses, a equipe entrega funcionalidades úteis ao cliente
- Discussão frequente do rumo do projeto e comunicação sobre descobertas
- Comunicação osmótica: a equipe deve trabalhar em uma única sala para que uns possam ouvir a conversa dos outros e participar dela quando julgarem conveniente
 - Considera-se uma boa prática interferir no trabalho dos outros
 - Os programadores devem trabalhar individualmente, mas bem próximos uns dos outros

Pilares

De acordo com (WAZLAWICK, 2019), os quatro pilares recomendados do Crystal Clear são:

- Segurança pessoal: certeza de que os participantes do projeto poderão falar sem medo de repreensões
- Foco: Dois ou três tópicos de alta prioridade, sem receber novas atribuições
- Acesso fácil a especialistas: especialistas devem estar disponíveis para colaborar com a equipe de desenvolvimento
- Ambiente tecnologicamente rico: o ambiente deve permitir testes automáticos, gerenciamento de configuração e integração frequente

Dúvidas?

Referências

Conteúdo produzido com base nos materiais da profa. Eliana.

PRESSMAN, R. S. Software engineering: a practitioner's approach. *Pressman and Associates*, 2005.

SOMMERVILLE, I. *Engenharia de Software - 9 ed.* [S.I.]: Pearson, 2011.

WAZLAWICK, R. Engenharia de software: conceitos e práticas. [S.I.]: Elsevier Editora Ltda., 2019.